Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Chem Sci ; 15(9): 3262-3272, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38425519

RESUMEN

The precisely engineered structures of materials greatly influence the manifestation of their properties. For example, in the process of alkali metal ion storage, a carefully designed structure capable of accommodating inserted and extracted ions will improve the stability of material cycling. The present study explores the uniform distribution of self-grown carbon nanotubes to provide structural support for the conductive and elastic MXene layers of Ti3C2Tx-Co@NCNTs. Furthermore, a compatible electrolyte system has been optimized by analyzing the solvation structure and carefully regulating the component in the solid electrolyte interphase (SEI) layer. Mechanistic studies demonstrate that the decomposition predominantly controlled by FSI- leads to the formation of a robust inorganic SEI layer enriched with KF, thus effectively inhibiting irreversible side reactions and major structural deterioration. Confirming our expectations, Ti3C2Tx-Co@NCNTs exhibits an impressive reversible capacity of 260 mA h g-1, even after 2000 cycles at 500 mA g-1 in 1 M KFSI (DME), surpassing most MXene-based anodes reported for PIBs. Additionally, density functional theory (DFT) calculations verify the superior electronic conductivity and lower K+ diffusion energy barriers of the novel superstructure of Ti3C2Tx-Co@NCNTs, thereby affirming the improved electrochemical kinetics. This study presents systematic evaluation methodologies for future research on MXene-based anodes in PIBs.

2.
Aging (Albany NY) ; 16(2): 1237-1248, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38289593

RESUMEN

Diabetic nephropathy (DN) is one of the most serious complications in diabetic patients. And m6A modifications mediated by METTL3 are involved multiple biological processes. However, the specific function and mechanism of METTL3 in DN remains unclear. DN model mice were first established with streptozotocin, and WISP1 expression was confirmed by qRT-PCR. Then the influences of WISP1 or/and METTL3 on the proliferation, migration, and epithelial-mesenchymal transition (EMT) and fibrosis-related proteins of high glucose (HG)-induced HK2 cells or HK2 cells were tested through CCK-8, wound healing, and western blot. We first revealed that WISP1 was highly expressed in renal tissues of DN model mice and HG-induced HK2 cells. Functionally, WISP1 or METTL3 silencing could weaken the proliferation, migration, EMT, and fibrosis of HG-treated HK2 cells, and WISP1 or METTL3 overexpression could induce the proliferation, migration, EMT, and fibrosis of HK2 cells. Additionally, METTL3 silencing could decrease WISP1 m6A modification, and silencing of METTL3 also could notably suppress the biological functions of HG-induced HK2 cells by downregulating WISP1. Silencing of METTL3 prevents DN development process by decreasing WISP1 with m6A modification pattern. Therefore, we suggest that METTL3/WISP1 axis might be a novel therapeutic target for DN.


Asunto(s)
Proteínas CCN de Señalización Intercelular , Nefropatías Diabéticas , Transición Epitelial-Mesenquimal , Metiltransferasas , Animales , Humanos , Ratones , Adenina/análogos & derivados , Proliferación Celular/genética , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/metabolismo , Fibrosis , Glucosa/toxicidad , Metiltransferasas/metabolismo , Proteínas CCN de Señalización Intercelular/genética , Proteínas CCN de Señalización Intercelular/metabolismo
3.
Phys Rev Lett ; 132(2): 020601, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38277590

RESUMEN

Anyons, exotic quasiparticles in two-dimensional space exhibiting nontrivial exchange statistics, play a crucial role in universal topological quantum computing. One notable proposal to manifest the fractional statistics of anyons is the toric code model; however, scaling up its size through quantum simulation poses a serious challenge because of its highly entangled ground state. In this Letter, we demonstrate that a modular superconducting quantum processor enables hardware-pragmatic implementation of the toric code model. Through in-parallel control across separate modules, we generate a 10-qubit toric code ground state in four steps and realize six distinct braiding paths to benchmark the performance of anyonic statistics. The path independence of the anyonic braiding statistics is verified by correlation measurements in an efficient and scalable fashion. Our modular approach, serving as a hardware embodiment of the toric code model, offers a promising avenue toward scalable simulation of topological phases, paving the way for quantum simulation in a distributed fashion.

4.
Medicine (Baltimore) ; 102(48): e36319, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38050288

RESUMEN

BACKGROUND: Cyclin-dependent Kinase Subunit 2 is a protein closely related to the regulation of the cell cycle. In recent years, there has been an increasing number of research articles on this topic. However, there is a lack of comprehensive synthesis and evaluation in the field of CKS2 research. This study aims to summarize and visualize the literature distribution, research hotspots, and development trends of CKS2 based on bibliometric methods. METHODS: Publications from 1999 to 2022 were extracted from the Web of Science. Citespace was used to analyze the relevant information of each article. RESULTS: A total of 138 publications focused on CKS2 showed a positive growth trend from 1999 to 2022 and were published by 27 countries. The most prolific countries are China and the USA. The most prolific institution is Scripps Research Institute. The most prolific author is Steven I. Reed from Scripps Research Institute. The most cited article is published by Todd R Golub. The most cited author is Hanna-Stina Martinsson-Ahlzen. The journal with the most published articles is International Journal of Oncology. The high frequency keywords suggest that expression and function of CKS2 in cancer are dominated topics. The clusters and burst words suggest that expression and function of CKS2 still active in the future. CONCLUSION SUBSECTIONS: The results of this bibliometric analysis provide information on the state and trends in CKS2 from 1999 to 2022. It is helpful for scholars to pinpoint hot issues and discover new areas of study.


Asunto(s)
Academias e Institutos , Quinasas CDC2-CDC28 , Humanos , Bibliometría , Ciclo Celular , China , Instituciones de Salud , Proteínas de Ciclo Celular
5.
Medicine (Baltimore) ; 102(46): e36105, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37986287

RESUMEN

Knee osteoarthritis (KOA) is the most common joint disease worldwide and, with the progression of an aging population, is one of the most important causes of disability worldwide. Its main symptoms include articular cartilage damage, periarticular pain, swelling, and stiffness. Intra-articular (IA) injections offer many advantages over systemic administration and surgical treatment, including direct action on the target joint to improve local bioavailability, reduce systemic toxicity, and lower costs. This study analyzed KOA intra-articular injection treatment and its hot literature and research horizons using bibliometric methodologies and graphical tools to aid future research. We performed a bibliometric analysis of 2360 publications in the Web of Science core collection using CiteSpace software. The United States (28.26% of publications) and China (18%) had the biggest publications. Rush University was the most active institution, but Boston University had the greatest citation/publication rate (65.77), suggesting a high literature standard. The majority of publications were in Osteoarthritis and cartilage. Bannuru RR was the most referenced author, while Filardo, Giuseppe was the most productive author. Studies in platelet-rich plasma (PRP), mesenchymal stem cells (MSCs), and microsphere formulation are likely to be future research hotspots. The current scientometric study provides an overview of KOA intra-articular injection therapy studies from 2012 to 2022. This study outlines the current research hotspots and potential future research hotspots in the field of intra-articular injection treatment for KOA and may serve as a resource for researchers interested in this topic.


Asunto(s)
Cartílago Articular , Osteoartritis de la Rodilla , Plasma Rico en Plaquetas , Humanos , Anciano , Osteoartritis de la Rodilla/tratamiento farmacológico , Osteoartritis de la Rodilla/cirugía , Inyecciones Intraarticulares , Bibliometría , Resultado del Tratamiento
6.
ACS Appl Mater Interfaces ; 15(37): 43778-43789, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37672756

RESUMEN

Challenges remain to show good capacitive performance while achieving high loadings of active materials for supercapacitors. Trying to realize this version, a nickel-protecting carbon fiber paper@Co-doped NiSx (Ni-CP@Co-NiSx) electrode with high specific gravimetric, areal, and volumetric capacitance is reported in this work. This free-standing electrode is prepared by an electroplating-hydrothermal-electroplating (EHE) three-step method to achieve a high loading of almost 26.7 mg cm-2. The cobalt-doping and nickel-protection strategies effectively decrease the impedance and inhibit the active material dropping from the electrode resulting from the expansion stress, which endows the Ni-CP@Co-NiSx electrode with a high rate and good cycling performance, especially with an ultrahigh specific areal/volumetric/gravimetric capacitance of 53.3 F cm-2/2807 F cm-3/1997 F g-1 at 5 mA cm-2, respectively. Employing activated carbon functionalized with riboflavin (AC/VB2) as a negative electrode, the asymmetric supercapacitor device delivers a very high energy density of up to 60.4 W h kg-1. This work demonstrates that electrodes with a high loading density and excellent performance can be obtained by the combination of the EHE method to adjust the internal conductivity and external structural stability.

7.
PeerJ ; 11: e15372, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37193029

RESUMEN

Objective: Recent studies have suggested that high levels of ß2-microglobulin are linked to cognitive deterioration; however, it is unclear how this connects to spinal cord injury (SCI). This study sought to determine whether there was any association between cognitive decline and serum ß2-microglobulin levels in patients with SCI. Methods: A total of 96 patients with SCI and 56 healthy volunteers were enrolled as study participants. At the time of enrollment, specific baseline data including age, gender, triglycerides (TG), low-density lipoprotein (LDL), systolic blood pressure (SBP), diastolic blood pressure (DBP), fasting blood glucose (FBG), smoking, and alcohol use were recorded. Each participant was assessed by a qualified physician using the Montreal cognitive assessment (MoCA) scale. Serum ß2-microglobulin levels were measured using an enzyme-linked immunosorbent assay (ELISA) reagent for ß2-microglobulin. Results: A total of 152 participants were enrolled, with 56 in the control group and 96 in the SCI group. There were no significant baseline data differences between the two groups (p > 0.05). The control group had a MoCA score of 27.4 ± 1.1 and the SCI group had a score of 24.3 ± 1.5, with the difference being significant (p < 0.05). The serum ELISA results revealed that the levels of ß2-microglobulin in the SCI group were considerably higher (p < 0.05) than those in the control group (2.08 ± 0.17 g/mL compared to 1.57 ± 0.11 g/mL). The serum ß2-microglobulin level was used to categorize the patients with SCI into four groups. As serum ß2-microglobulin levels increased, the MoCA score reduced (p < 0.05). After adjustment of baseline data, further regression analysis showed that serum ß2-microglobulin level remained an independent risk factor for post-SCI cognitive impairment. Conclusions: Patients with SCI had higher serum levels of ß2-microglobulin, which may be a biomarker for cognitive decline following SCI.


Asunto(s)
Disfunción Cognitiva , Traumatismos de la Médula Espinal , Humanos , Microglobulina beta-2/análisis , Biomarcadores , Presión Sanguínea , Disfunción Cognitiva/diagnóstico , Traumatismos de la Médula Espinal/complicaciones
8.
Small ; 19(36): e2302267, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37127852

RESUMEN

The low conductivity of sulfur and the shuttle effect of lithium polysulfides (LiPSs) are the two intrinsic obstacles that limit the application of lithium-sulfur batteries (LSBs). Herein, a sulfur vacancy introduced NiCo2 S4 nanosheet array grown on carbon nanofiber (CNF) membrane (NiCo2 S4-x /CNF) is proposed to serve as a self-supporting and binder-free interlayer in LSBs. The conductive CNF skeleton with a non-woven structure can effectively reduce the resistance of the cathode and accommodate volume expansion during charge-discharge process. The bonding between CNF matrix and NiCo2 S4 nanosheet is enhanced by in situ growth, ensuring fast electron transfer. Besides, the sulfur vacancies in NiCo2 S4 enhance the chemisorption of LiPSs, and the highly active sites at vacancies can accelerate the LiPSs conversion kinetics. LSB paired with NiCo2 S4-x /CNF interlayer achieved improved stability in 500 cycles at 0.2 C and long life of 3000 cycles at 3 C. More importantly, a high areal capacity of 9.69 mAh cm-2 is achieved with a sulfur loading of 10.8 mg cm-2 and a low electrolyte to sulfur (E/S) ratio of 4.8. This work provides insight into the sulfur vacancy in catalysis design for LiPSs conversion and demonstrates a promising direction for electronic defect engineering in material design for LSBs.

9.
iScience ; 26(5): 106692, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37216089

RESUMEN

The complexity of the human intervertebral disc (IVD) has hindered the elucidation of the microenvironment and mechanisms underlying IVD degeneration (IVDD). Here we determined the landscapes of nucleus pulposus (NP), annulus fibrosus (AF), and immunocytes in human IVD by scRNA-seq. Six NP subclusters and seven AF subclusters were identified, whose functional differences and distribution during different stages of degeneration (Pfirrmann I-V) were investigated. We found MCAM+ progenitor in AF, as well as CD24+ progenitor and MKI67+ progenitor in NP, forming a lineage trajectory from CD24+/MKI67+ progenitors to EffectorNP_⅓ during IVDD. There is a significant increase in monocyte/macrophage (Mφ) in degenerated IVDs (p = 0.044), with Mφ-SPP1 exclusively found in IVDD but not healthy IVDs. Further analyses of the intercellular crosstalk network revealed interactions between major subpopulations and changes in the microenvironment during IVDD. Our results elucidated the unique characteristics of IVDD, thereby shedding light on therapeutic strategies.

10.
Front Neurol ; 14: 1120446, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36949855

RESUMEN

Objective: Neutrophil gelatinase-associated lipoprotein (NGAL), a protein encoded by the lipocalcin-2 (LCN2) gene, has been reported to be involved in multiple processes of innate immunity, but its relationship with spinal cord injury (SCI) remains unclear. This study set out to determine whether NGAL played a role in the development of cognitive impairment following SCI. Methods: At the Neck-Shoulder and Lumbocrural Pain Hospital, a total of 100 SCI patients and 72 controls were enrolled in the study through recruitment. Through questionnaires, baseline data on the participants' age, gender, education level, lifestyle choices (drinking and smoking) and underlying illnesses (hypertension, diabetes, coronary heart disease, and hyperlipidemia) were gathered. The individuals' cognitive performance was evaluated using the Montreal Cognitive Scale (MoCA), and their serum NGAL levels were discovered using ELISA. Results: The investigation included 72 controls and 100 SCI patients. The baseline data did not differ substantially between the two groups, however the SCI group's serum NGAL level was higher than the control group's (p < 0.05), and this elevated level was adversely connected with the MoCA score (p < 0.05). According to the results of the ROC analysis, NGAL had a sensitivity of 58.24% and a specificity of 86.72% for predicting cognitive impairment following SCI. Conclusions: The changes in serum NGAL level could serve as a biomarker for cognitive impairment in SCI patients, and this holds true even after taking in account several confounding variables.

11.
Phys Rev Lett ; 130(3): 030603, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36763397

RESUMEN

Gate-based quantum computation has been extensively investigated using quantum circuits based on qubits. In many cases, such qubits are actually made out of multilevel systems but with only two states being used for computational purpose. While such a strategy has the advantage of being in line with the common binary logic, it in some sense wastes the ready-for-use resources in the large Hilbert space of these intrinsic multidimensional systems. Quantum computation beyond qubits (e.g., using qutrits or qudits) has thus been discussed and argued to be more efficient than its qubit counterpart in certain scenarios. However, one of the essential elements for qutrit-based quantum computation, two-qutrit quantum gate, remains a major challenge. In this Letter, we propose and demonstrate a highly efficient and scalable two-qutrit quantum gate in superconducting quantum circuits. Using a tunable coupler to control the cross-Kerr coupling between two qutrits, our scheme realizes a two-qutrit conditional phase gate with fidelity 89.3% by combining simple pulses applied to the coupler with single-qutrit operations. We further use such a two-qutrit gate to prepare an EPR state of two qutrits with a fidelity of 95.5%. Our scheme takes advantage of a tunable qutrit-qutrit coupling with a large on:off ratio. It therefore offers both high efficiency and low crosstalk between qutrits, thus being friendly for scaling up. Our Letter constitutes an important step toward scalable qutrit-based quantum computation.

12.
Small ; 19(4): e2204880, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36420944

RESUMEN

Lithium-sulfur (Li-S) batteries have attracted considerable attention owing to their extremely high energy densities. However, the application of Li-S batteries has been limited by low sulfur utilization, poor cycle stability, and low rate capability. Accelerating the rapid transformation of polysulfides is an effective approach for addressing these obstacles. In this study, a defect-rich single-atom catalytic material (Fe-N4/DCS) is designed. The abundantly defective environment is favorable for the uniform dispersion and stable existence of single-atom Fe, which not only improves the utilization of single-atom Fe but also efficiently adsorbs polysulfides and catalyzes the rapid transformation of polysulfides. To fully exploit the catalytic activity, catalytic materials are used to modify the routine separator (Fe-N4 /DCS/PP). Density functional theory and in situ Raman spectroscopy are used to demonstrate that Fe-N4 /DCS can effectively inhibit the shuttling of polysulfides and accelerate the redox reaction. Consequently, the Li-S battery with the modified separator achieves an ultralong cycle life (a capacity decay rate of only 0.03% per cycle at a current of 2 C after 800 cycles), and an excellent rate capability (894 mAh g-1 at 3 C). Even at a high sulfur loading of 5.51 mg cm-2 at 0.2 C, the reversible areal capacity still reaches 5.4 mAh cm-2 .

13.
J Colloid Interface Sci ; 635: 32-42, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36577353

RESUMEN

Lithium-sulfur (Li-S) batteries are considered promising candidates for next-generation advanced energy storage systems due to their high theoretical capacity, low cost and environmental friendliness. However, the severe shuttle effect and weak redox reaction severely restrict the practical application of Li-S batteries. Herein, a functional catalytic material of tin disulfide on porous carbon spheres (SnS2@CS) is designed as a sulfur host and separator modifier for lithium-sulfur batteries. SnS2@CS with high electrical conductivity, high specific surface area and abundant active sites can not only effectively improve the electrochemical activity but also accelerate the capture/diffusion of polysulfides. Theoretical calculations and in situ Raman also demonstrate that SnS2@CS can efficiently adsorb and catalyse the rapid conversion of polysulfides. Based on these advantages, the SnS2@CS-based Li-S battery delivers an excellent reversible capacity of 868 mAh/g at 0.5C (capacity retention of 96 %), a high rate capability of 852 mAh/g at 2C, and a durable cycle life with an ultralow capacity decay rate of 0.029 % per cycle over 1000 cycles at 2C. This work combines the design of sulfur electrodes and the modification of separators, which provides an idea for practical applications of Li-S batteries in the future.

14.
Front Med (Lausanne) ; 9: 989950, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213637

RESUMEN

Observational data from China, the United States, France, and Italy suggest that chronological age is an adverse COVID-19 outcome risk factor, with older patients having a higher severity and mortality rate than younger patients. Most studies have gotten the same view. However, the role of aging in COVID-19 adverse effects is unclear. To more accurately assess the effect of aging on adverse COVID-19, we conducted this bidirectional Mendelian randomization (MR) study. Epigenetic clocks and telomere length were used as biological indicators of aging. Data on epigenetic age (PhenoAge, GrimAge, Intrinsic HorvathAge, and HannumAge) were derived from an analysis of biological aging based on genome-wide association studies (GWAS) data. The telomere length data are derived from GWAS and the susceptibility and severity data are derived from the COVID-19 Host Genetics Initiative (HGI). Firstly, epigenetic age and telomere length were used as exposures, and following a screen for appropriate instrumental variables, we used random-effects inverse variance weighting (IVW) for the main analysis, and combined it with other analysis methods (e.g., MR Egger, Weighted median, simple mode, Weighted mode) and multiple sensitivity analysis (heterogeneity analysis, horizontal multiplicity analysis, "leave-one-out" analysis). For reducing false-positive rates, Bonferroni corrected significance thresholds were used. A reverse Mendelian randomization analysis was subsequently performed with COVID-19 susceptibility and severity as the exposure. The results of the MR analysis showed no significant differences in susceptibility to aging and COVID-19. It might suggest that aging is not a risk factor for COVID-19 infection (P-values are in the range of 0.05-0.94). According to the results of our analysis, we found that aging was not a risk factor for the increased severity of COVID-19 (P > 0.05). However, severe COVID-19 can cause telomere lengths to become shorter (beta = -0.01; se = 0.01; P = 0.02779). In addition to this, severe COVID-19 infection can slow the acceleration of the epigenetic clock "GrimAge" (beta = -0.24, se = 0.07, P = 0.00122), which may be related to the closely correlation of rs35081325 and COVID-19 severity. Our study provides partial evidence for the causal effects of aging on the susceptibility and severity of COVID-19.

15.
Dis Markers ; 2022: 2141882, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36157206

RESUMEN

Background: Astragalus membranaceus (Huang-qi, AM) and Angelica sinensis (Dang-gui, AS) are common Chinese herbal medicines and have historically been used in spinal cord injury (SCI) therapies. However, the underlying molecular mechanisms of AM&AS remain little understood. The purpose of this research was to explore the bioactive components and the mechanisms of AM&AS in treating SCI according to network pharmacology and the molecular docking approach. Methods: AM&AS active ingredients were first searched from Traditional Chinese Medicine Systems Pharmacology (TCMSP) and Traditional Chinese Medicine Information Database (TCM-ID). Meanwhile, we collected relevant target genes of SCI through the GeneCards database, OMIM database, PharmGkb database, DurgBank database, and TDD database. By utilizing the STRING database, we constructed a network of protein-protein interactions (PPIs). In addition, we used R and STRING to perform GO and KEGG function enrichment analyses. Subsequently, AutoDock Vina was employed for a molecular docking study on the most active ingredients and most targeted molecules to validate the results of the network pharmacology analysis mentioned above. Result: The overall number of AM&AS active compounds identified was 22, while the number of SCI-related targets identified was 159. Then, the 4 key active ingredients were MOL000098 quercetin, MOL000422 kaempferol, MOL000354 isorhamnetin, and MOL000392 formononetin. A total of fourteen core targets were TP53, ESR1, MAPK1, MTC, HIF1A, HSP90AA1, FOS, MAPK14, STAT1, AKT1, EGFR, RELA, CCND1, and RB1. The KEGG enrichment analysis results indicated that lipid and atherosclerosis, PI3K-Akt signaling pathway, human cytomegalovirus infection, fluid shear stress, and atherosclerosis, etc., were enhanced with SCI development. Based on the analyses of docked molecules, four main active compounds had high affinity for the key targets. Conclusions: Altogether, it identified the mechanisms by which AM&AS was used for SCI treatment, namely, active ingredients, targets and signaling pathways. Consequently, further research into AM&AS treating SCI can be conducted on this scientific basis.


Asunto(s)
Angelica sinensis , Aterosclerosis , Medicamentos Herbarios Chinos , Proteína Quinasa 14 Activada por Mitógenos , Traumatismos de la Médula Espinal , Astragalus propinquus , Medicamentos Herbarios Chinos/farmacología , Receptores ErbB , Humanos , Quempferoles , Lípidos , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Quercetina , Traumatismos de la Médula Espinal/tratamiento farmacológico
16.
World J Surg Oncol ; 20(1): 272, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042478

RESUMEN

BACKGROUND: Accurately positioning totally implantable venous access device (TIVAD) catheters and reducing complications in pediatric patients are important and challenging. A number of studies have shown methods for locating the tip of the TIVAD catheter. We assessed the success and complications of TIVAD implantation guided by transesophageal echocardiography (TEE) via the internal jugular vein (IJV) for 294 patients in this retrospective study. METHODS: From May 2019 to March 2021, 297 cases of TIVADs in our hospital were analyzed in this observational, non-randomized, single-center study. The position of the catheter tip under TEE and chest radiography and rates of periprocedural, early, and late complications were evaluated. RESULTS: The implantation was successful in 242 (82.3%) cases which was in a proper position, and the results were consistent with those of postoperative chest radiography. A total of 72 complications were recorded. Of these, 1 case had a perioperative complication, 66 had early complications, and 5 had late complications after port implantation. The most common complications were local infection and catheter malposition, namely 10 (13.9%) cases of incision infection and 58 (80.6%) cases of catheter malposition. In total, 6 (8.3%) cases of port explantation were required. CONCLUSION: Confirmation of proper TIVAD catheter positioning by TEE through an internal jugular approach in children was accurate and safe.


Asunto(s)
Cateterismo Venoso Central , Venas Yugulares , Cateterismo Venoso Central/efectos adversos , Cateterismo Venoso Central/métodos , Catéteres de Permanencia/efectos adversos , Niño , Ecocardiografía Transesofágica , Humanos , Venas Yugulares/diagnóstico por imagen , Venas Yugulares/cirugía , Estudios Retrospectivos
17.
Dis Markers ; 2022: 2141854, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35571610

RESUMEN

Objective: Spinal cord injury (SCI) has become prevalent worldwide in recent years, and its prognosis is poor and the pathological mechanism has not been fully elucidated. Nogo-A is one of the isoforms of the neurite outgrowth inhibitory protein reticulon 4. The purpose of this study was to determine whether Nogo-A could be used as a marker for predicting the prognosis of SCI. Methods: We screened eligible SCI patients and controls based on inclusion and exclusion criteria. We also collected baseline clinical information and peripheral venous blood of the enrolled population. Participants' baseline serum Nogo-A levels were measured by enzyme-linked immunosorbent assay (ELISA). The American Spinal Injury Association (ASIA) scale was used to evaluate the prognosis of SCI patients after 3 months. Results: Baseline clinical information (age; gender; smoking; drinking; SBP, systolic blood pressure; DBP, diastolic blood pressure; fasting blood glucose; WBC, white blood cells; CRP, C-reactive protein) of SCI patients and controls were not statistically significant academic differences (p > 0.05). The baseline serum Nogo-A levels of SCI patients and controls were 192.7 ± 13.9 ng/ml and 263.1 ± 22.4 ng/ml, respectively, and there was a statistically significant difference between the two groups (p < 0.05). We divided SCI patients into 4 groups according to their baseline serum Nogo-A quartile levels and analyzed their relationship with ASIA scores. The trend test results showed that with the increase of Nogo-A level, the ASIA sensation score and ASIA motor score were significantly decreased (p < 0.001). Multivariate regression analysis showed that serum Nogo-A levels remained a potential cause affecting the prognosis of SCI after adjusting for confounding factors in multiple models. Conclusions: Serum Nogo-A levels were significantly elevated in SCI patients. Moreover, elevated Nogo-A levels often indicate poor prognosis and can be used as a marker to predict the prognosis of SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Biomarcadores , Ensayo de Inmunoadsorción Enzimática , Humanos , Proteínas Nogo , Pronóstico , Traumatismos de la Médula Espinal/epidemiología
18.
J Colloid Interface Sci ; 620: 57-66, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35405566

RESUMEN

Li-rich layered oxides are recognized as promising candidates for next-generation Li-ion batteries owing to the high capacity of >250 mAh g-1, but the severe voltage fade has prevented their commercialization. It is widely known that high-voltage charge processes result in layered-to-spinel structural evolution and voltage fade in Li-rich layered oxides. This work emphasizes that limiting the low-voltage reduction can maintain the structure and voltage stability of Li-rich layered oxides after the 4.6 V high-voltage charge processes. A strategy of limiting the low-voltage (<2.8 V) reduction by cycling at 4.6-2.8 V was performed in traditional Li1.2Ni0.13Mn0.54Co0.13O2 and high-Ni Li1.2Ni0.222Mn0.504Co0.074O2. After 300 cycles, traditional Li1.2Ni0.13Mn0.54Co0.13O2 and high-Ni Li1.2Ni0.222Mn0.504Co0.074O2 cycling at 4.6-2 V showed midpoint discharge voltages of 2.83 V and 2.97 V with high voltage fade rates of 2.25 mV/cycle and 2.24 mV/cycle, respectively. While the two materials cycling at 4.6-2.8 V can maintain discharge midpoint voltages of 3.34 V and 3.49 V, with low voltage decay rates of 0.692 mV/cycle and 0.632 mV/cycle, respectively. To better understand the voltage performance, their electric structures were calculated by density functional theory. Physical characterizations were also used to analyze their differences in structural evolution. The results suggested that limiting low-voltage reduction in Li-rich layered oxides is highly necessary for maintaining their structure and voltage stability.

19.
Small ; 18(17): e2107380, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35332689

RESUMEN

High energy density and long cycle life of lithium-sulfur (Li-S) batteries suffer from the shuttle/expansion effect. Sufficient sulfur storage space, local fixation of polysulfides, and outstanding electrical conductivity are crucial for a robust cathode host. Herein, a modified template method is proposed to synthesize a highly regular and uniform nitrogen/oxygen dual-doped honeycomb-like carbon as sulfur host (N/O-HC-S). The unique structure not only offers physical entrapment for polysulfides (LiPSs) but also provides chemical adsorption and catalytic conversion sites of polysulfides. In addition, this structure offers enough space for loading sulfur, and a regular space of nanometer size can effectively prevent sulfur particles from accumulating. As expected, the as-prepared N/O-HC900-S with high areal sulfur loading (7.4 mg cm-2 ) shows a high areal specific capacity of 7.35 mAh cm-2 at 0.2 C. Theoretical calculations also reveal that the strong chemical immobilization and catalytic conversion of LiPSs attributed to the spin density and charge distribution of carbon atoms will be influenced by the neighbor nitrogen/oxygen dopants. This structure that provides cooperative chemical adsorption, high lithium ions flux, and catalytic conversion for LiPSs can offer a new strategy for constructing a polysulfide confinement structure to achieve robust Li-S batteries.

20.
Dis Markers ; 2022: 5389162, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35082930

RESUMEN

OBJECTIVE: Spinal cord injury (SCI) has become popular in recent years, and cognitive decline is a common complication. Adiponectin is a common protein hormone involved in the course of many diseases, but its relationship with SCI has not yet been elucidated. The purpose of our prospective study is to explore whether adiponectin can be used as a biomarker of cognitive decline in SCI. METHODS: A total of 64 healthy volunteers and 92 patients with acute SCI were recruited by us. Serum adiponectin levels, demographic data (age and gender), lifestyle (smoking and drinking), medical history (diabetes and hypertension), and clinical baseline data (low-density lipoprotein, high-density lipoprotein, and fasting blood glucose) were recorded. Three months after enrollment, we used the Montreal Cognitive Assessment (MoCA) to evaluate cognitive function. Based on a quarter of the serum adiponectin levels, SCI patients were divided into 4 groups, and the differences in their MoCA scores were compared. In addition, we used multivariate linear regression to predict the risk factors of the MoCA score. RESULTS: The serum adiponectin level (6.1 ± 1.1 µg/ml) of SCI patients was significantly lower than that of the healthy control group (6.7 ± 0.9 µg/ml), and there was a significant difference between the two (p < 0.001). The group with higher serum adiponectin levels after 3 months of spinal cord injury had higher MoCA scores. Multivariate regression analysis showed that serum adiponectin level is a protective factor for cognitive function after SCI (ß = 0.210, p = 0.043). CONCLUSIONS: Serum adiponectin levels can be used as an independent predictor of cognitive function in patients with acute SCI.


Asunto(s)
Adiponectina/sangre , Disfunción Cognitiva/sangre , Índice de Severidad de la Enfermedad , Traumatismos de la Médula Espinal/sangre , Adulto , Biomarcadores/sangre , Estudios de Casos y Controles , Disfunción Cognitiva/etiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Prospectivos , Factores de Riesgo , Traumatismos de la Médula Espinal/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...